

126 GeV Boson – a permanent addition to the recipe of our Universe

 $\sqrt{s} = 7 \text{ TeV}, L \le 5.1 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}, L \le 19.6 \text{ fb}^{-1}$ Combined CMS Preliminary m_H = 125.7 GeV $\mu = 0.80 \pm 0.14$ $H \rightarrow bb (VH tag)$ $p_{SM} = 0.94$ $H \rightarrow bb$ (ttH tag) $H \rightarrow \gamma \gamma$ (untagged) $H \rightarrow \gamma \gamma$ (VBF tag) $H \rightarrow \gamma \gamma$ (VH tag) $H \rightarrow WW (0/1 \text{ jet})$ $H \rightarrow WW (VBF tag)$ $H \rightarrow WW (VH tag)$ $H \rightarrow \tau\tau$ (0/1 jet) $H \rightarrow \tau\tau$ (VBF tag) $H \rightarrow \tau\tau$ (VH tag) $H \rightarrow ZZ$ (0/1 jet) $H \rightarrow ZZ$ (2 jets) -2 Best \overline{f} it σ/σ_{SM}

Mass = 125.7 + /-0.3 + /-0.3

Has all the general features we are currently able to test at the LHC

How far can the LHC go? Total width stops us at 15-20%

New Physics in the Higgs Sector

- Where can new physics enter? (Examples)
 - Deviation in couplings to fermions? Additional degrees of freedom in the Higgs sector that mix boson states or introduce multiple vacuum expectation values or mixed states of the fermion
 - Total width increase? Additional low mass particles that go undetected/unidentified at the LHC
 - − Deviation in loop processes (gg→H, H→ $\gamma\gamma$, H→ $Z\gamma$)? Additional heavy particles entering loops.

Primary Conclusion of Higgs Report

- A precision Higgs program necessarily requires:
 - Improvement on α_s and order of magnitude tightening on the precision of on fundamental parameters in Electroweak theory and on elementary masses
 - We gain primarily on the power of theory predictions and we believe that all areas of particle physics will gain from this – we need to collaborate more with EDM/etc to understand what the other demands are outside of Higgs physics
 - High statistics of Higgs production in the ZH production process at a lepton collider - we've received white papers for e⁺e⁻ linear and circular colliders and the muon collider
 - The precision on the total Higgs width in this environment is essential to enable precision tests in the Higgs sector and to challenges the major new physics questions
 - Dedicated s-channel machines ($\gamma\gamma$ and $\mu\mu$) can also make unique contributions

High Precision Program (Some Examples)

X	Physics	Present precision		Challenge
M _Z MeV/c2	Input	91187.5 ±2.1	Z Line shape scan	QED corrections
$\Gamma_{ m z}$ MeV/c2	$\Delta \rho$ (T) (no $\Delta \alpha$!)	2495.2 ±2.3	Z Line shape scan	QED corrections
R	α_{s} , δ_{b}	20.767 ± 0.025	Z Peak	QED corrections
N_{ν}	Unitarity of PMNS, sterile v's	2.984 ±0.008	Z Peak	QED corrections to Bhabha scat.
R _b	δ_{b}	0.21629 ±0.00066	Z Peak	Hemisphere correlations
\mathbf{A}_{LR}	$\Delta \rho$, ϵ_3 , $\Delta \alpha$ (T, S)	0.1514 ±0.0022	Z peak, polarized	Design experiment
M _W MeV/c2	$\Delta \rho$, ϵ_{3} , ϵ_{2} , $\Delta \alpha$ (T, S, U)	80385 ± 15	Threshold scan	
m_{top} MeV/c2	Input	173200 ± 900	Threshold scan	Theory limit at 100 MeV?

Few 10^{-6} on $\sin^2\theta_{\rm W}$

Sub-MeV Z/W/top masses

Improved α_s

Tightening on # of v's

GOAL: An order of magnitude improvement on fundamental parameters

6

Reaches well beyond Higgs Physics

Agreement with the Standard Model becomes a speck in this plot

Is the final stopping point in the expansion of the universe – the Higgs vacuum decay?

Precision Higgs Program

- Coupling measurements
- Double Higgs production and the Higgs self-coupling
- Study of CP-mixture and spin
- Mass and Total Width measurements
- Direct searches for Beyond-the-SM Higgs Bosons
- Conclusions
 - Highlighting outcomes of the report
 - Facility comparisons for this physics

From Higgs studies and electroweak high precision tests...

...to HE-physics and -Frontier exploration

Higgs Coupling Measurements

Facility	LHC	HL-LHC	ILC	ILC LumiUP	CLIC	TLEP (4 IPs)		
Energy (GeV)	14,000	14,000	250 + 500 + 1000	250 + 500 + 1000	350 + 1400 + 3000	240 + 350		
$\int \mathcal{L}dt \ (\mathrm{fb}^{-1})$	300/expt	$3000/\mathrm{expt}$	250 + 500 + 1000	1150 + 1600 + 2500	500 + 1500 + 2000	10000 + 1400		
$N_{H} \ (\times 10^{6})$	17	170	0.37	1.05	2.2	3.2		
LHC must a	assume SN	decay m	odes	Improvement factors of x3-x10 are possible				
and dashes	indicate 2 ⁿ	d gen cou	ecisio (much more	without SM as	sumptions)			
$m_H \text{ (MeV)}$	100	50	35	35	33	7		
$\Delta\Gamma_H$	_	_	4.8/1.6/1.2%	tbd	?	0.5%		
$\mathrm{BR}_{\mathrm{inv}}$	< 14 - 18%	< 7 - 11%	< 0.44/0.30/0.26%	tbd	tbd	< 0.1%		
$\Delta g_{H\gamma\gamma}$	5 - 7%	2-5%	4.9/4.3/3.3%	tbd	-/5.5/<5.5%	1.5%		
$\Delta g_{HZ\gamma}$	41-41%	10 - 12%	?	?	tbd	tbd		
Δg_{Hgg}	6 - 8%	3 - 5%	4.0/2.0/1.4%	tbd	3.6/0.79/0.56%	0.79%		
Δg_{HWW}	4-6%	2-5%	1.9/0.24/0.17%	tbd	1.5/0.15/0.11%	0.10%		
Δg_{HZZ}	4-6%	2-4%	0.44/0.30/0.27%	tbd	0.49/0.33/0.24%	0.05%		
$\Delta g_{H\mu\mu}$	update	update	-/-/16%	tbd	-/10/5.2%	6.2%		
$\Delta g_{H au au}$	6 - 8%	2-5%	3.3/1.9/1.4%	tbd	3.5/1.4/<1.3%	0.51%		
Δg_{Hcc}	_	_	4.7/2.5/2.1%	tbd	3.1/1.1/0.75%	0.69%		
Δg_{Hbb}	10 - 13%	4-7%	2.7/0.94/0.69%	tbd	1.7/0.32/0.19%	0.39%		
Δg_{Htt}	14 - 15%	7-10%	14/9.3/3.7%	tbd	$-/4.0/{<}4.0\%$	13%		
Δg_{HHH}	_	50%	26%	16%	16/10%	-		

Muon Collider is expected to have a similarly rich physics program as an e^+e^- collider – more detailed simulation studies are needed. $\gamma\gamma$ colliders also have coupling numbers. ¹¹

Higgs e⁺e⁻ Factory Comparison Nominal Linear (ILC 250-500 GeV) vs. Circular (TLEP 240-350 GeV)

Improvement Factor

				TOVETTETTE T detoi	
Facility	ILC	TLEP (4 IP)	(Lin/HL-LHC)	(Circ/HL-LHC)	(Circ/Lin)
Energy (GeV)	500	350	Improvement ove	r LHC is much larger	
$\int \mathcal{L}dt \; (\mathrm{fb}^{-1})$	+500	+1400		otions are dropped	
$\Delta\Gamma_h/\Gamma_h$	6.0%	0.6%	~x100 or more	~x1000 or more	x10
$\mathcal{B}_{ ext{inv}}$	< 0.69%	< 0.1%	~x14 or more	~x100 or more	x7
$\Delta g_{\gamma}/g_{\gamma}$	8.4%	1.5%	x(1/7)-x1	x1-x3	x5
$\Delta g_{Z\gamma}/g_{Z\gamma}$?	?			
$\Delta g_g/g_g$	2.5%	0.8%	x1-x2	x3-x6	х3
$\Delta g_W/g_W$	1.4%	0.19%	x1-x2	x10-x26	x7
$\Delta g_Z/g_Z$	1.3%	0.15%	x1-x3	x13-x33	x8
$\Delta g_{\mu}/g_{\mu}$	_	6.2%	-	x1-x2	TLEP-only
$\Delta g_{ au}/g_{ au}$	2.5%	0.54%	x1-x2	x3-x9	x4
$\Delta g_c/g_c$	3.0%	0.71%	(e⁺e⁻ only)	(e⁺e⁻ only)	x4
$\Delta g_b/g_b$	1.8%	0.42%	x2-x4	x9-x16	x4
$\Delta g_t/g_t$	18%	13%	x(1/2)	x(1/2)-x1	~Same

http://www.snowmass2013.org/tiki-index.php?page=The+Higgs+Boson

Double Higgs production and Higgs Self-Coupling

- Difficult to measure at all facilities
 - best at CLIC (10% precision) and 1 TeV ILC-up (16%)
- High energy 100 TeV pp collider has largest potential to make percent-level measurements
 - Just based on cross section (x50 over LHC)
- γγ Collider is investigating HH at √s=290 GeV

	HL-LHC	ILC500	ILC1000	ILC1000-up	CLIC1400	CLIC3000	VLHC
$\Delta g_{hhh}/g_{hhh}$	50%	88%	25%	16%	28/21%	16/10%	?

Table 1-21. Expected per-experiment precision of the triple-Higgs boson coupling. ILC1000-up is the luminosity upgrade with 2500 fb⁻¹ at 1000 GeV. The two numbers for each CLIC energy are without/with 80% electron beam polarization.

CP-Mixture and Spin

- Highest CP sensitivity at a γγ collider
 - And potentially at muon collider with polarization
- Tau-lepton polarization at e⁺e⁻ colliders

Facility	LHC	HL-LHC	e^+e^-	e^+e^-	e^+e^-	$\mu^+\mu^-$	$\gamma\gamma$	target		
Energy (GeV)	14,000	14,000	250	500	other	?	126	(theory)		
$\int \mathcal{L}dt \text{ (fb}^{-1})$	300/expt	3000/expt	250	500	other	?	?			
$\overline{\text{spin-}2_m^+}$	$\sim 10\sigma$	$\gg 10\sigma$	$>10\sigma$	$>10\sigma$		\checkmark	\checkmark	$>5\sigma$		
	•••	•••	•••	•••	•••	•••	•••			
\overline{ZZH}	0.07^{\dagger}	0.02^{\dagger}	0.0008	0.00005		√	\checkmark	$< 10^{-5}$		
\overline{WWH}	\checkmark	√	√	\checkmark		√	\checkmark	$< 10^{-5}$		
ggH	?	?	_	_		_	_	$< 10^{-2}$		
$\gamma \gamma H$	_	?	_	_		_	< 0.01	$< 10^{-2}$		
$Z\gamma H$	_	?	_	_		_	_	$< 10^{-2}$		
$\tau \tau H$?	?	0.01	0.01		√	√	$< 10^{-2}$		
ttH	√	√	_	√		_	_	$< 10^{-2}$		
$\mu\mu H$	_	_	_	_		✓	_	$< 10^{-2}$		
bbH	_	?	?	?		_	_	$< 10^{-2}$		
† estimated only in $H \to ZZ^*$ decay mode.										

Z – tagging by missing mass at an e⁺e⁻ collider

total rate $\propto g_{HZZ}^2$ ZZZ final state $\propto g_{HZZ}^4/\Gamma_H$ \rightarrow measure total width Γ_H (vvH is used to get $H\rightarrow$ ZZ statistics)

empty recoil = invisible width 'funny recoil' = exotic Higgs decay

Muon collider Lineshape scan

Precision of percent to sub-percent on Higgs total width

Need High Statistics for Z boson dilepton decay mode

15

Mass and Total Width Measurements

- LHC is not able to make sub-GeV constraints on the Higgs width (predicted to be ~4 MeV)
- e⁺e⁻ colliders are limited by statistics in ZH production and can achieve 0.6-11%
- Muon collider has unique lineshape scan capability (1.7-17%)

	LHC	HL-LHC	ILC250	Full ILC	ILC LumUp	CLIC	TLEP (4 IP)	μC
$m_h \; ({ m MeV})$	100	50	35	35	?	33	7	0.03 - 0.25
$\Delta\Gamma_h$	_	_	11%	5.6%	2.7%	8.4%	0.6%	1.7 – 17%

Table 1-24. Summary of of the Higgs mass and total width measurement capabilities of various facilities. "Full ILC" is 250+500+1000 GeV with 250+500+1000 fb⁻¹, while "ILC LumUp" is 1150+1600+2500 fb⁻¹ at the same collision energies.

Direct searches for Beyond-the-SM Higgs Bosons

e⁺e⁻ Collider - mass reach up to half of center-of-mass energy (500 GeV ILC, 1.5 TeV CLIC):

$$M_{H^+} < \sqrt{s}/2, \qquad M_{H^0} + M_{A^0} < \sqrt{s}.$$

- Muon Collider Possibility of resonance production – mass reach up to center-of-mass energy can to to Multi-TeV
- HL-LHC will potentially exclude MSSM Higgs sector that is within the reach of a 1 TeV ILC (with di-tau and VV decays)
- 100 TeV pp Collider has highest mass reach

Major Challenges for Higgs Physics

- The LHC at 14 TeV will probe new physics at and above the TeV scale in a broad sweep
 - Beyond the LHC, the most promising avenue for future exploration is via the Higgs boson properties through high precision measurement.
 - What precision needs to be achieved to challenge our understanding of the universe and the laws of physics?
- The Higgs boson and the top quark were guaranteed discoveries based on exactly this strategy
 - The basis for the high precision measurements came from the Z factories (over 10⁶ Z bosons produced on resonance and studied with polarized beams).

A Future Direction

- A precision Higgs physics program is compelling because the Standard Model precisely predicts all Higgs boson couplings and properties with no free parameters, now that the Higgs mass is known.
 - There is a vision for a precision Higgs program:
 - An order of magnitude increase in precision on fundamental parameters at the EW scale, improvement on $\alpha_{\rm s}$ and corresponding improvements in theory predictions
 - High statistics Higgs production in the ZH process to achieve a model-independent percent-level precision on the total width
 - Multi-TeV collider technology to pursue higher precision on ttH, Higgs self-couplings, and to pursue the new states that give rise to Higgs coupling deviations (if found)
 - The potential to go after high- p_T physics by embracing the largest technology challenges and energizing the next generation to move orders of magnitude beyond what we can do today